Po pierwsze:Podczas prac z lampami uważaj na wysokie napięcie występujące w układzie!
Energia elektryczna zgromadzona w kondensatorach zasilacza może Cię poważnie porazić! Lub ZABIĆ nawet... !!!Po drugie:Podczas prac z lampami uważaj na wysokie napięcie występujące w układzie!
Energia elektryczna zgromadzona w kondensatorach zasilacza może Cię poważnie porazić! Lub ZABIĆ nawet... !!!Po trzecie:Podczas prac z lampami uważaj na wysokie napięcie występujące w układzie!
Energia elektryczna zgromadzona w kondensatorach zasilacza może Cię poważnie porazić! Lub ZABIĆ nawet... !!!
Jak obiecałem wcześniej w temacie:
http://audiohobby.pl/topic/5/2933tak piszę:
W typowych układach na wysokie napięcie zasilające/anodowe stosuje się rezystor katodowy a
dodatkowo można jeszcze spotkać rezystor o małej wartości rezystancji (pojedyncze
kiloomy, nawet więcej) pomiędzy rezystorem na wejściu i siatką - głównie dla
zabezpieczenia przed wzbudzeniem układu. W stopniach tranzystorowych też
się je stosuje. Nawet w najprostszych wtórnikach na tranzystorze.
A to pokazane jest na rysunku nr 3.Na razie wszystko dotyczy pierwszego schematu z rezystorem w anodzie czyli rysunek nr 1. Jest to najprostszy z możliwych - stopień triodowy.
Kondensator wejściowy:Niepolaryzowany. Lepiej jest zastosować /fabryczny/ kondensator niepolaryzowany niż bawić się w jego składanie z dwóch zwykłych polaryzowanych elektrolitów.
Wartość pojemności tego kondensatora zależy od dolnej częstotliwości granicznej jaką chcemy uzyskać, tak aby otrzymana dzięki temu
charakterystyka częstotliwościowa była w miarę liniowa. Powiedzmy -3dB czy nawet -1dB bo takie są najczęściej podawane.***
BTW, zastanowiło Was podawanie przez producentów sprzętu parametrów
urządzeń najczęściej tylko przy testowym sygnale o częstotliwości 1kHz? Dotyczy to zwłaszcza poziomu zniekształceń ? :)
***Wartość pojemności kondensatora wejściowego /sprzęgającego/ jaką wybierzemy ściśle wiąże się z daną wartością oporu rezystora siatka - masa.Dla lamp za dolna częstotliwość graniczną często przyjmuje się 10Hz lub 16Hz.
Obliczamy wartość dolnej częstotliwości granicznej przy danych wartościach
oporu rezystora wejściowego i danej pojemności kondensatora sprzęgającego:Przyjmujemy jednostki: Hz /Hertz/, Ω /ohm/ oraz F /farad/Dla pojemności kondensatora wejściowego równej 100nF /nano farada/ i wartości rezystancji /oporu/ rezystora 100kΩ /kilo ohm/ otrzymamy dolną częstotliwość graniczną równa 10Hz. Oczywiście częstotliwości niższe od 10Hz będą przenoszone, ale będzie widoczny już znaczny spadek wzmocnienia sygnałów o tak niskich częstotliwościach. To samo dotyczy w drugą stronę, czyli w zakresie pasma przenoszonych częstotliwości typowo 20kHz i wzwyż.Trochę obliczeń do ww wartości oporu i pojemności, do tego kilka obliczeń dla innych wartości tych elementów:
Dla dolnej częstotliwości granicznej = 16Hz
f=0,16 / RCDla 100nF i rezystora 1Mohm otrzymamy 16Hz
f=0,16 / 100kohm * 0,0001F=0,16 / 0,01=16HzDla 10nF i rezystora 1Mohm otrzymamy 16Hz
f=0,16 / 1000kohm * 0,00001F=0,16 / 0,01=16Hz
Wystarczy zatem pamiętać, że 16Hz na wejściu (czy wyjściu)
dostanę przy 100kΩ i 100nF /nano faradach/. Łatwo policzyć wtedy wartość pojemności
kondensatora sprzęgającego dla 1kΩ, 10kΩ czy 47kΩ (liczymy dla 50kΩ). Przy innych wartościach elementów dobieramy to na „oko” - w górę lub dół. No chyba, że ktoś chce dobrać dokładnie.
Przy okazji warto wspomnieć, że typowe wartości jak 1kΩ, 10kΩ, 22kΩ, 47kΩ,
100kΩ, 1MΩ można znaleźć niemal w każdym sprzęcie audio.O co więc chodzi z tym granicznym /dolnym i górnym/ pasmem przenoszonych częstotliwości?
Musimy pamiętać, że w układzie audio /np. stopień na lampie poniżej/ nie występują wyłącznie napięcia stałe w czasie. Dla sygnałów zmiennych występuje również zjawisko oporności kondensatora dla sygnału zmiennego /audio/. Jak to wszystko wygląda w przełożeniu na papier?
Wygląda tak:
Kondensator 10nF dla napięcia o częstotliwości 50Hz przedstawia oporność
około 300kΩ.
Dla częstotliwości 25Hz - około 600kΩ
Dla częstotliwości 10kHz - około 1,5kΩMożna to zresztą wyliczyć ze wzoru na oporność pozorną kondensatora.
Wzór na powyższą oporność jest nieco pokrętny, ale dojdę do niego nieco później.W układzie audio, przy użyciu lamp w. cz. pomijam pojemności
między elektrodowe i efekt Millera. Jeżeli komuś zależy jednak na wywalczeniu kolejnych 10kHz w paśmie przenoszonych częstotliwości przy niekiedy już osiągniętych 200kHz - wtedy warto zainteresować się pojemnościami pomiędzy elektrodami.
Za kondensatorem wejściowym /sprzęgającym/, pomiędzy siatką lampy a masą układu mamy wstawiony rezystor. Jest on nazywany rezystorem siatkowym, rezystorem upływu siatki.Wartość jego rezystancji wyznacza rezystancję wejściową układu (impedancja
czyli opór dla sygnału zmiennego jest tutaj podobna)
W typowych układach lampowych stosuje się raczej duże wartości oporu dla
tego rezystora - 1MΩ do nawet 10MΩ (dla mnie wartość kosmiczna jak na
rezystor ;)Rezystor ten odpowiada za rezystancję wejściową, impedancję wejściową, dodatkowo rozładowuje kondensator wejściowy - dlaczego rozładowuje? - ponieważ lampa ma baaardzo dużą rezystancję widziana od strony tego kondensatora wejściowego.Co jeszcze robi ten rezystor?Ten rezystor siatkowy polaryzuje siatkę /czyli podaje/ustala napięcie stałe na siatce/. Po co ten rezystor polaryzuje siatkę?Po to aby prąd anodowy lampy przy wysokich napięciach zasilania nie był zbyt duży.
Każda lampa ma określoną maksymalną wartość tego prądu (mocy też).
Lepiej nie szarżować.Żeby prąd anodowy nie był zbyt duży to na siatce musimy zapewnić napięcie
ujemne względem katody.
Tutaj wymyślono coś, co nazywa się auto-polaryzacją (we wzmacniaczach mocy
jest wręcz obowiązkowa)Posiedźmy teraz chwilę nad układem z rezystorem katodowym.
/Rysunki numer 3 i 4/Przy wysokich napięciach zasilania tj. najczęściej przy katalogowych-
nominalnych dla danej lampy prąd siatki jest równy 0. Czyli go nie ma.Na rezystorze siatkowym (siatka - masa, ale bez tego rezystora o małej
wartości pomiędzy rezystorem siatkowym a siatką) nie ma wtedy spadku
napięcia, no bo spadek napięcia to napięcie mierzone na zaciskach elementu
podczas przepływu prądu.Nie ma prądu - nie ma spadku napięcia.Siatka ma wtedy potencjał masy (masa = 0 volt)Gdy lampa pracuje -> przepływa przez nią prąd. Prąd anodowy jest taki sam jak katodowy (mają tę samą wartość)Wtedy efektem przepływu tego prądu jest spadek napięcia na rezystorze
katodowym (prawo Ohma: I=U/R - U=I*R = prąd anodowy * wartość oporu
rezystora katodowego).Daje nam to wtedy napięcie dodatnie na katodzie względem masy.A wtedy napięcie na katodzie jest wyższe od napięcia siatki, no bo napięcie na
siatce jest niższe od napięcia katodowego o spadek napięcia na rezystorze
katodowym. Pokrętne to trochę ale działa.
Gdzie ta auto polaryzacja? Tutaj -> gdy prąd lampy zwiększy się, wtedy zwiększy się też
spadek napięcia na rezystorze katodowym co automatycznie zwiększa ujemne napięcie siatki, co w końcu prowadzi do zmniejszenia prądu.Czyli wstawiając rezystor katodowy - wstawiamy ujemne sprężenie zwrotne,
które stabilizuje punkt pracy lampy. Proste.Tyle że to sprzężenie obejmuje nie tylko
prąd stały, ale i zmienny i w sumie spada nam wzmocnienie sygnału audio.Co można zrobić by temu spadkowi wzmocnienia zapobiec?:Można postawić bypass na rezystor katodowy ;)
Tyle że wtedy przy wzroście wzmocnienia wzrosną trochę zniekształcenia sygnału.Dodając do rezystora katodowego (równolegle z nim) kondensator powodujemy
tym właśnie kondensatorem niejako zwarcie katody do masy - ale dla przebiegów zmiennych (!) Więc wzmocnienie dla sygnału audio nie będzie obniżane.Taki sam myk stosuje się w układach tranzystorowych - właśnie po to, by
zwiększyć wzmocnienie układu. Ale UWAGA.
Musimy zwrócić uwagę na wartość pojemności tego kondensatora.
Nie można wstawić kondensatora o przypadkowej pojemności.
Gdy kondensator będzie miał zbyt małą wartość pojemności to osłabi
nam bass ;) albo nawet obetnie...Jak obliczyć wartość pojemności tego kondensatora katodowego /spiętego równolegle z rezystorem katodowym/? - ze wzoru.A to jest już mocno pokręcone. Przynajmniej wzór. Będzie później.Ktoś zapyta: na jakie napięcie powinniśmy wstawić ten kondensator? - to za chwilę, i nie będą to bardzo wysokie napięcia.
Trzeba przyjąć jakąś dolną częstotliwość graniczną, a dla niej nasz kondensator powinien przedstawiać oporność bardzo małą - względem wartości rezystancji opornika /rezystora/ katodowego.Wystarczy gdy „oporność” tego kondensatora będzie dla tej częstotliwości
przynajmniej z 10 do 20 razy mniejsza od wartości rezystancji rezystora katodowego.
O wartościach oporu kondensatora dla przebiegu zmiennego pisałem gdzieś
wyżej.
Wracając jeszcze do triody:Była lewa strona, był dół - no to jeszcze prawa strona schematu i góra.Kondensator sprzęgający na wyjściu dobiera się do rezystora wyjściowego tak samo jak ten na wejściu. Czyli musimy znowu dobrać sobie częstotliwość graniczną dolną:
Dla dolnej częstotliwości granicznej = 16Hz
f=0,16 / RCDla 100nF i rezystora 1Mohm otrzymamy 16Hz
f=0,16 / 100kohm * 0,0001F=0,16 / 0,01=16HzDla 10nF i rezystora 1Mohm otrzymamy 16Hz
f=0,16 / 1000kohm * 0,00001F=0,16 / 0,01=16Hz
f=0,16 / 100kΩ * 0,0001F=0,16 / 0,01=16 (Hz)
Przy okazji - warto jeszcze pamiętać, że rezystor na wyjściu decyduje też o rezystancji wyjściowej...Była prawa strona, jedźmy w górę:Rezystor anodowy:Rezystor ten obciąża anodę lampy, więc ma wpływ na wzmocnienie stopnia i na wartość sygnału jaki będziemy mogli z niego podebrać.Cała rzecz w tym, że nie możemy wstawić tego rezystora o zbyt małej wartości rezystancji, gdyż automatycznie nie będziemy w stanie odebrać odpowiednio wysokiego poziomu sygnału na wyjściu jak i nie uzyskamy wysokiego wzmocnienia na tym stopniu lampowym.W drugą stronę - też nie dobrze.Jeżeli wstawimy rezystor anodowy o zbyt dużej wartości rezystancji, wówczas jesteśmy w stanie uzyskać wysokie wzmocnienie napieciowe tego stopnia, ale też bez przesady bo w końcu zabraknie nam sygnału /audio/ - po prostu sygnał audio wzmocniony przez lampę odbierany jest jako spadek napięcia na tym rezystorze anodowym. Będzie miał zbyt wysoką wartość rezystancji -> tego napięcia nie odłoży się za wiele. No i prądu też nam nie dostarczy...To tak samo jakbyśmy wstawili w anodę jakiś rezystor o bardzo małej wartości rezystancji -> znowu tego napięcia nie odłoży się zbyt wiele.
A przecież lampa wzmacnia sygnał i zakładamy że chcemy uzyskać dość duże napięcie na wyjściu układu.Więc co z tym zrobić?Każda lampa ma wyznaczone swoje charakterystyki. Z nich możemy odczytać opór roboczy tej lampy - tutaj triody. Należy dobrać rezystor anodowy tak, aby jego wartość nie była dużo mniejsza od wartości oporu roboczego danej lampy, oraz aby wartość rezystancji tego rezystora nie była też wielokrotnie wyższa od wartości oporu roboczego danej lampyWartość oporu rezystora anodowego powinno
się dobrać na poziomie tak z 10 razy większym niż opór roboczy tej lampy.W praktyce prawie nikt na to nie patrzy... ;)W stopniu triodowym /a ogólnie w stopniach lampowych/ aby uzyskać wartość wzmocnienia napięciowego na poziomie zbliżonym do znamionowych wartości wzmocnienia podanych dla każdej lampy, ważne jest aby obciążenie lampy było dobrane w taki sposób, by jednocześnie obciążenie lampy wstawione w szereg z anodą lampy - czyli rezystor, miało niską wartość oporu dla prądu stałego - czyli napięcia zasilającego, ale jednocześnie w tym samym czasie aby to obciążenie stawiało wysoki dynamiczny opór dla przebiegów zmiennych.Czyli dla rezystora wstawionego w szereg z anodą mamy... problem.
Musimy tutaj /konstruktorzy/ iść na kompromisy - zresztą cała elektronika analogowa opiera się na kompromisach, zwłaszcza urządzenia audio ;) - nie tylko w samym układzie, projekcie urządzenia, ale i podczas pomiarów... ktoś zastanowił się nad rozdzielczością tych "wybitnych" - taka oczywista oczywistość - cyfrowych oscyloskopów? Nie?;))Wróćmy do rezystora anodowego:Rezystor ten obciąża anodę lampy, więc ma wpływ na wzmocnienie stopnia.Gdyby /przy takim samym dość wysokim napięciu zasilania/ zwiększyć jego wartość z 10kΩ do 100kΩ czy nawet do 1MΩ wówczas wartość wzmocnienia wzrośnie.Pamiętajmy, że napięcie anodowe jest niższe od napięcia zasilającego dany stopień właśnie o spadek napięcia na tymże rezystorze anodowym, czyli napięcie anodowe jest niższe od napięcia zasilającego o wartość napięcia jaka odłoży się na końcówkach tego rezystora. Jak ten spadek napięcia na elemencie - tutaj rezystorze obliczyć? To trochę później, przy okazji projektowania stopnia mocy ;)Wróćmy jeszcze raz do tego naszego rezystora anodowego w stopniu napięciowym.
Lepiej aby on tam był, ponieważ stanowi dla lampy stałe obciążenie na wyjściu."Problem" z doborem jego wartości?
Oczywiście nie, ale w przypadku niskich napięć zasilających lampę /i tym samym niskich napięć anodowych/ możemy wykorzystać pewną sztuczkę,- znaną głównie z tranzystorowych wzmacniaczy audio pracujących w klasie A - czyli baaardzo ogólnie mówiąc, ze wzmacniaczy, w których stopnie pracują w stanie ciągłego przewodzenia prądu, przy okazji są mało wrażliwe na tętnienia napięcia zasilającego, właśnie z powodu dość stałego poboru prądu.Jaka to sztuczka? - źródło prądowe. "Coś", co jest w stanie dostarczyć prąd o stałej /dobranej przez nas/ wartości.Właśnie przez zamianę rezystora anodowego na źródło prądowe jesteśmy w stanie otrzymać automatycznie w tym samym czasie:1 - dużą wartość prądu zasilającego lampę, gdzie wcześniej przy zastosowaniu rezystora anodowego o dużej wartości rezystancji nie byliśmy w stanie dostarczyć za wiele prądu, choć wzmocnienie napięciowe na lampie mogliśmy uzyskać niemalże zbliżone do wartości znamionowych podanych w charakterystykach /dość duża wartość rezystancji tego rezystora - czyli dość wysokie napięcie mogło się na nim odłożyć - tak, chodzi o spadek napięcia/
Przy nieco większych napięciach zasilających i wyższym prądzie anodowym - choć bez przesady... - maleją zniekształcenia w układzie. 2 - wysoką wartość oporu dynamicznego dla przebiegów zmiennych, czyli możliwość uzyskania wysokiego stopnia wzmocnienia napięciowego - oczywiście dla konkretnej lampy i jej charakterystyk.Heh, czyli podmieniając rezystor katodowy na źródło prądowe jesteśmy w stanie uzyskać lepsze parametry elektryczne - w porównaniu do samego rezystora wpiętego w szereg z anodą. No i wzmocnienie stopnia nie będzie się za bardzo „gibać w te i we wte”Nieźle, co?I co teraz? Czy stosowanie źródła prądowego w miejsce rezystora anodowego nie ma wad? Oczywiście ma wady. Choć wszystko zależy od konkretnej sytuacji, napięć zasilających... itd. Znowu kompromisy...No dobra, to teraz czas na projekt prostego, choć dobrego wzmacniacza mocy.Tutaj przedstawię kilka wcześniejszych zagadnień, jednak wszystko już na bazie obliczeń. Wszystkie parametry dobieram tak, aby nie tyle łatwo było je policzyć, co by nie straszyły dziwnymi liczbami...
Schemat wzmacniacza mocy jest na rysunku numer 4.We wzmacniaczach mocy uzwojenie pierwotne transformatora głośnikowego wpięte jest pomiędzy zasilacz a anodę - uzwojenie pierwotne transformatora głośnikowego w dość dużym stopniu ustawia maksymalny prąd płynący przez lampę.
Od czego zacząć? - patrzymy do katalogu jaką maksymalną wartość prądu toleruje lampa - tutaj jeżeli chcemy wycisnąć maksymalną moc z lampy - znowu korzystamy z prawa Ohma czyli Rk=U/IJeżeli max prąd siatki ekranującej to /powiedzmy/ 5mA a max prąd
anodowy to 50mA to suma tych prądów równa się 55mA. Aha – jeszcze jedno
potrzeba. W katalogu trzeba poszukać wartość różnicy potencjałów pomiędzy
katodą i siatką.U siebie mam /niewykorzystane jeszcze/ lampy EL84, więc przykład będzie akurat na nich.Z katalogu doczytałem, że:Lampa EL84:
Napięcie anodowe = 250V
Napięcie siatki ekranującej (EL84 to pentoda) = 250V /my damy 200V/
Ujemne przed napięcie siatki = -7,5V
Prąd anodowy = 48mA
Prąd siatki ekranującej = 5,5mA
Moc wyjściowa = 5,5W (w sumie niezły piecyk może być do gitary)Oporność robocza to 5,2 kΩ a jak wspomniałem wcześniej - wartość oporu rezystora anodowego powinno się dobrać na poziomie tak z 10 razy większą niż opór roboczy tej lampy. Tyle że tutaj opór uzwojenia pierwotnego jest jaki jest, więc wartość prądu ustalamy głównie rezystorem katodowym /w triodzie pamiętamy o rezystorze anodowym i o rezystorze katodowym !/ dodatkowo w tym przypadku napięcie anodowe będzie wręcz równe napięciu zasilającemu. Max stratność anody to 12W.
Różnica potencjałów pomiędzy katodą i siatką: przyjmę że jest równo 7V.No to z Ohma - Rk=U/I czyli tutaj:7V/53,5mA - zmieniam jednostki aby wyszło w „omach” -> 7V/0,0535A
co nam daje 140 Ω.Czyli dla lampy EL84 nie powinienem wstawić nic co ma mniej niż 140Ω bo
zrobię lampie krzywdę.Dalej -> Przy zasilaniu napięciem anodowym 250V i przy prądzie anodowym równym 48mA
(wg katalogu) moc strat lampy to: P = U * I czyli 250V * 48mA = 12WI aby było mi łatwiej, przyjmę sobie dolną częstotliwość graniczną na poziomie 100Hz /oczywiście można przyjąć te 16Hz czy nawet 10Hz/To samo dla pożądanej wartości oporu pozornego kondensatora /o tym pisałem wcześniej/. Niech tutaj wartość ta będzie 10 razy
mniejsza od wartości rezystora katodowego /tutaj nim regulujemy prąd lampy/ - rezystor wyliczyłem na 140Ω więc ja potrzebuję ich tak z 14, aby na równo wyszło damy 10Ω. Wzór na tą oporność kondensatora jest mocno pokręcony, zobaczyć go w końcu można na rysunku numer 5.
No to wyszło jakieś 150µF /mikro farada/. Wstawienie 220µF /mikro farada/ jeszcze bardziej obniży tę dolna częstotliwość graniczną naszego stopnia mocy.To jedziemy dalej:
O właśnie – a co z rezystorem siatki /tej od sygnału audio!/? W tym układzie wzmacniacza mocy mamy wysokie napięcie zasilania - bo napięcie podawane przez obciążenie anody lampy - czyli przez uzwojenie pierwotne transformatora głośnikowego jest dość wysokie bo 250V - czyli można wstawić rezystor o dużej wartości rezystancji. Może z 1MΩ. Napięcie drugiej siatki ustawimy na 200V.Właśnie, teraz mogę opisać ciekawe zjawisko powstające w triodzie, wróćmy na chwilę do niej:Przy niskich napięciach anodowych tj. w granicach i poniżej 50V, w lampie - typowej triodzie audio jaką jest ECC88 czy E88CC a nawet PCC88 pojawi się prąd siatki (znajdziemy go na drodze od siatki do katody)Przepływa on przez rezystor siatkowy - skoro prąd przepływa przez rezystor o danej wartości rezystancji /oporu/ to na siatce pojawia się napięcie
/no bo to nic innego jak spadek napięcia na elemencie/.Żeby było śmieszniej - jest to napięcie ujemne...Zmienia to trochę punkt pracy lampy poprzez delikatne obniżenie prądu
anodowego. Ale źle wcale nie jest. Przy małych napięciach anodowych „obwód” siatka - katoda zaczyna działać jak lampowa dioda próżniowa :)Generalnie: wysokie napięcie zasilania spowoduje, że napięcie progowe
(napięcie przewodzenia) tej "diody" będzie wyższe od przebiegów zmiennych
„wchodzących” na siatkę poprzez wejściowy kondensator sprzęgający.
Przy niskim napięciu zasilania i tym samym niskim napięciu anodowym, napięcie progowe tej naszej diody próżniowej zejdzie do niższych wartości i podając na siatkę dodatnie napięcie (sygnał audio) o dość dużych wtedy wartościach spowoduje przepływ prądu w lampie.Przy amplitudzie mniejszej od napięcia progowego „diody próżniowej”, prąd tej
diody nie płynie, średnie napięcie siatki jest równe 0.
Przy amplitudzie większej od napięcia progowego (przewodzenia) tej diody
próżniowej średnie napięcie siatki ulegnie zmniejszeniu.
Pokrętne to trochę, ale tak to wygląda.
Powrót do końcówki mocy.Policzmy zatem jakie napięcie odłoży się na rezystorze katodowym - dzięki temu teraz zobaczymy na jaką wartość napięcia będziemy musieli wstawić ten elektrolityczny kondensator bocznikujący rezystor katodowy.***
Gdyby ktoś sie pogubił - wyliczyliśmy, że dla dolnej częstotliwości granicznej równej 100Hz /bo tak było łatwiej - patrz rysunek nr 5 ze wzorem/
jego wartość pojemności powinna wynieść około 150µF /mikro faradów/
my wstawimy nieco wyższą wartość pojemności - 220µF /mikro faradów/ - co obniży nam jeszcze bardziej tę dolną częstotliwość graniczną - też nieźle, choć ustalanie tej dolnej granicy na 0,5Hz jest trochę na wyrost.. :)
***Skoro dowiodłem, że na rezystorze katodowym podczas pracy lampy jest
napięcie stałe /dowiodłem?/, a napięcie zmienne do masy zwiera mi obliczony wcześniej kondensator, to teraz wyliczę sobie, jak wysokie napięcie tam na tym rezystorze katodowym siedzi.Wyliczyłem wcześniej oporność tego rezystora na 140Ω a prąd jaki tam płynie to około 53mA. Z prawa Ohma mam I = U * R czyli U = I * RPo podstawieniu mam U=0.053mA * 140Ω = 7.42V Skoro jest to wzmacniacz mocy, musimy więc pamiętać /jak zawsze zresztą/ o doborze odpowiednich elementów, tak aby całość nie zajęła się ogniem ;) - a przynajmniej nie przegrzała.Prąd lampy ustalamy tutaj rezystorem katodowym, więc sprawdźmy ile musi on tam przy katodzie wytrzymać:Moc rezystora katodowego to będzie:P = U *I = 7V(około) * 50mA(około) = 7V * 0,05A = 0,35WCzyli - abym miał spokój -> to rezystor katodowy w tym wzmacniaczu powinien
mieć tak moc 0,5W wzwyż. Wstawienie mocniejszego np. 2W nie jest przegięciem ;).
W sumie teraz to tylko pozostaje doczepić zasilania i transformator głośnikowy - ten można dobrać u producenta pod dany typ lampy.
Oczywiście jakość tego wzmacniacza zależy od użytego transformatora głośnikowego...No to raz jeszcze:Podczas prac z lampami uważaj na wysokie napięcie występujące w układzie!
Energia elektryczna zgromadzona w kondensatorach zasilacza może Cię poważnie porazić! Lub ZABIĆ nawet... !!!***Powyższy tekst jak i rysunki udostępniam na licencji:http://creativecommons.org/licenses/by-sa/2.5/pl/
na dzień 02 kwietnia 2009Gabriel ^..^ ^..^ ^..^